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Abstract

This paper develops characterizations of identified sets of structures and structural features

for complete and incomplete models involving continuous or discrete variables. Multiple values

of unobserved variables can be associated with particular combinations of observed variables.

This can arise when there are multiple sources of heterogeneity, censored or discrete endogenous

variables, or inequality restrictions on functions of observed and unobserved variables. The

models generalize the class of incomplete instrumental variable (IV) models in which unobserved

variables are single-valued functions of observed variables. Thus the models are referred to as

Generalized IV (GIV) models, but there are important cases in which instrumental variable

restrictions play no significant role. Building on a definition of observational equivalence for

incomplete models the development uses results from random set theory which guarantee that

the characterizations deliver sharp bounds, thereby dispensing with the need for case-by-case

proofs of sharpness. The use of random sets defined on the space of unobserved variables allows

identification analysis under mean and quantile independence restrictions on the distributions

of unobserved variables conditional on exogenous variables as well as under a full independence

restriction. The results are used to develop sharp bounds on the distribution of valuations in
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an incomplete model of English auctions, improving on the pointwise bounds available till now.

Application of many of the results of the paper requires no familiarity with random set theory.

Keywords: instrumental variables, endogeneity, excess heterogeneity, limited information, par-

tial identification, random sets, incomplete models, English auctions.

JEL classification: C10, C14, C24, C26.

1 Introduction

This paper develops characterizations of identified sets —equivalently sharp bounds —for a wide class

of complete and incomplete structural models admitting general forms of unobserved heterogeneity.1

To demonstrate the power of these results we apply them to the incomplete model of English

auctions introduced in Haile and Tamer (2003) and characterize sharp bounds on the distribution

of valuations, tightening the pointwise bounds derived in that paper.

In the models we study multiple values of unobserved variables can be associated with a partic-

ular combination of values of observed endogenous and exogenous variables. This occurs in models

admitting multiple sources of heterogeneity such as random coeffi cients, in models with discrete or

censored outcomes, and in models in which observed and unobserved variables are constrained by

inequality restrictions.

Leading examples of the models we study are classical single equation instrumental variable

(IV) models such as the linear model (e.g. Wright (1928), Theil (1953), Basmann (1959)), semi-

parametric and nonparametric IV models (e.g. Newey and Powell (1989, 2003), and Chernozhukov

and Hansen (2005)), and extensions of these models allowing random coeffi cients and discrete or

censored outcomes. In these IV models there are restrictions on the influence of certain exogenous

variables on the determination of outcomes and restrictions on the extent of dependence between

observed exogenous and unobserved variables. We use the catch-all descriptor Generalized Instru-

mental Variable (GIV) models to describe the class of models studied in this paper.

The results can also be applied to models in which instrumental variables may play no significant

role. The incomplete model of English auctions employed in the leading example is of this type.

Let Y and Z denote, respectively, observed endogenous and exogenous variables, and let U

denote unobserved heterogeneity. Lower case y, z and u denote realizations of these random vectors

which may be continuous, discrete, or mixed continuous-discrete. The models studied in this paper

place restrictions on a structural function h (y, z, u) mapping the joint support of Y , Z, and U onto

the real line. The structural function defines the combinations of values of Y , Z and U that may

occur through the restriction that h (Y, Z, U) = 0 almost surely. For example, a classical linear IV

model in which Y1 = αY2 + Zβ + U has h(y, z, u) = y1 − αy2 − zβ − u. More examples are given
in Section 2.2.

1The terms “sharp bounds”and “identified sets”are used interchangeably throughout.
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The prime focus of this paper is on identification of structures. A structure (h,GU |Z) comprises

a structural function h coupled with a family of conditional distributions of U given Z:

GU |Z ≡ {GU |Z(·|z) : z ∈ RZ},

where GU |Z(S|z) is the probability that U belongs to set S given Z = z, and RZ is the support
of exogenous Z. Identified sets for structural features, for example a structural function or some

functional of it, are obtained as projections of identified sets of structures.

Level sets of the structural function h(y, z, u) play a central role in the development. Let RU
and RY denote the support of U and Y , respectively. The random set

U (Y, Z;h) ≡ {u ∈ RU : h (Y, Z, u) = 0} (1.1)

has realizations U (y, z;h) which contain all values of U that can give rise to Y = y when Z = z

according to structural function h. The random set

Y (U,Z;h) ≡ {y ∈ RY : h (y, Z, U) = 0} (1.2)

has realizations Y (u, z;h) which contain all values of Y that can occur when U = u and Z = z

according to the structural function h. Complete models require Y (U,Z;h) to be a singleton with

probability one for all admissible h. Incomplete models admit structural functions h such that

Y (U,Z;h) can have cardinality greater than one.2 Models with multiple sources of heterogeneity,

discrete or censored outcomes, or observed and unobserved variables restricted by inequality con-

straints have sets U (Y,Z;h) with realizations which may not be singleton sets. The GIV models

studied here require neither of these sets to be singleton and they are generally partially identifying.

This paper provides characterizations of identified sets of structures delivered by GIV models

given distributions of observable variables. Previously in this class of models the question of whether

sharp bounds are obtained has been primarily handled on a case-by-case basis. The usual approach

to proving sharpness is constructive, see for example Chesher (2010, 2013) and Rosen (2012). This

approach requires one to show that every structure in the identified set can deliver the distribution

of observed variables. This is often diffi cult to accomplish and sometimes, as in the auction model

of Haile and Tamer (2003), it is infeasible. The methodology introduced here is shown to always

deliver characterizations of sharp bounds. It is shown that these sets can be expressed as systems of

moment inequalities and equalities to which recently developed inferential procedures are applicable.

See for example Chesher and Rosen (2013) and Aradillas-Lopez and Rosen (2013) for empirical

applications using treatment effect and simultaneous ordered response models.

2 In Chesher and Rosen (2012) we specialize our approach for identification analysis to simultaneous discrete
outcome models. There we define incoherent models in which Y (U,Z;h) can be empty and we discuss several ways
in which incoherence can be addressed, with references to the literature on simultaneous discrete outcome models.
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The results of this paper are obtained using results from random set theory, reviewed in

Molchanov (2005) and introduced into econometric identification analysis by Beresteanu, Molchanov,

and Molinari (2011), henceforth BMM11. The analysis there employs the random set Y (U,Z;h) in

models where the identified set can be characterized through a finite number of conditional moment

inequalities involving an unobservable and possibly infinite-dimensional nuisance function, such as

an equilibrium selection mechanism in econometric models of games. Galichon and Henry (2011)

take an alternative approach using optimal transportation theory to characterize sharp parameter

bounds in parametrically specified incomplete models.

Instead of using the random Y -level set Y (U,Z;h), the approach taken in this paper uses the

random U -level sets U (Y,Z;h) to characterize identified sets for (h,GU |Z) in structural economet-

ric models. The analysis does not require the existence of a representation of the identified set

through a finite number of conditional moment equalities involving an unknown nuisance function

as required in BMM11. This allows treatment of models with continuous endogenous variables and

independence restrictions on the joint distribution of U and Z. The analysis here does not require

parametric specification for the structural function or the conditional distributions of unobserved

heterogeneity as required in Galichon and Henry (2011). The use of random U -level sets allows

consideration of a variety of restrictions on unobserved heterogeneity common in structural econo-

metrics, including stochastic independence, conditional mean, conditional quantile, and parametric

restrictions. Our earlier papers Chesher, Rosen, and Smolinski (2013) and Chesher and Rosen

(2012) also used U -level sets for identification analysis in models in which outcome variables were

required to be discrete, and with U and Z required to be independently distributed. In this pa-

per, using U -level sets allows identification analysis in a much broader class of models in which

each of the components of endogenous Y can be continuous, discrete, or mixed, and in which the

aforementioned alternative restrictions on the joint distribution of U and Z may be imposed.

The main result of this paper is as follows. Let θ be a structure. This is an object with

components which are a structural function h and a collection of conditional distributions GU |Z .
Let FY |Z(·|z) denote a conditional distribution of endogenous variables given Z = z. A random

set U (Y, Z;h) is characterized by the collection of random variables that almost surely lie in the

random set. These random variables are called measurable selections of the random set.3 It is shown

that the identified set of structures delivered by a model given distributions FY |Z(·|z), z ∈ RZ ,
comprises all θ admitted by the model such that for almost every z ∈ RZ , GU |Z(·|z) ∈ GU |Z is the
distribution of one of the measurable selections of U (Y,Z;h) when Y given Z = z has distribution

FY |Z(·|z).
Alternative characterizations of this selectionability property deliver alternative characteriza-

tions of the identified set. One such is delivered by Artstein’s (1983) inequality, characterizing the

3See Definition 1 and Molchanov (2005) for further details.
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identified set as those θ admitted by the model such that the inequality

GU |Z(S|z) ≥ P[U (Y,Z;h) ⊆ S|Z = z] (1.3)

holds for all closed sets S ⊆ RU and almost every z ∈ RZ . On the left hand side is the probability
that U has a realization in set S given Z = z. On the right hand side is the conditional probability

of the occurrence of one of the values of Y such that U (Y, Z;h) ⊆ S, under structural function
h. These are the values of Y that only occur when U ∈ S. A definition of collections of core

determining sets Q(h, z) is provided such that if (1.3) holds for all sets S ∈ Q(h, z), then it holds

for all closed S ⊆ RU , thereby reducing the collection of inequalities suffi cient to characterize the
identified set. Conditions are also given under which certain inequalities in (1.3) can be replaced

by equalities.4 Characterizations employing the Aumann expectation of the random set U (Y, Z;h)

are also provided.

This result relies on a definition of observational equivalence for models which may admit in-

complete structures. This extends the classical definition of observational equivalence for complete

models, see for example Koopmans (1949), Koopmans and Reiersøl (1950), Hurwicz (1950), Rothen-

berg (1971), Bowden (1973), and Matzkin (2007, 2008). Structures admitted by incomplete models

can generate multiple distributions of outcomes, hence our definition of observational equivalence

is in terms of random outcome sets Y (U,Z;h).

The traction we obtain on characterizing identified sets for structural econometric models relies

on a key duality result concerning the random level sets Y (U,Z;h) and U (Y,Z;h). This allows the

development of characterizations of observational equivalence in terms of properties of residual sets

U (Y,Z;h) rather than outcome sets Y (U,Z;h). This is what enables characterization of identified

sets in models employing alternative restrictions on the distribution of U and Z such as arise in

many structural econometric models.

The results of this paper greatly extend the application of structural models embodying IV

exclusion and independence restrictions. IV models with discrete or censored as well as continuous

outcomes and with multiple sources of heterogeneity can now be employed. Models which impose

inequality restrictions on observed and unobserved variables such as Haile and Tamer’s (2003)

incomplete model of English auctions are also included in the scope of application as shown in

Section 6.

1.1 Plan

Section 2 formalizes the GIV model restrictions and provides some leading examples of GIV models.

Section 3 provides our generalization of the classical notion of observational equivalence, our dual-

4We extend the use of core determining sets introduced in Galichon and Henry (2011) defining such sets on
the support of unobservables instead of the support of endogenous outcomes, and allowing them to depend on the
structural function h and the value of exogenous Z.

5



ity result, and some accompanying formal set identification characterizations, including a widely-

applicable construction written in terms of conditional moment inequalities. Section 4 shows how

to use the notion of core-determining sets to exploit the geometric structure of the random sets

U (Y,Z;h) to reduce the collection of conditional moment inequalities without losing identifying

power. Section 5 shows how restrictions on unobserved heterogeneity and exogenous variables,

such as independence, conditional mean, conditional quantile, and parametric restrictions can be

incorporated to further refine characterization of the identified set. Section 6 demonstrates how the

application of our results to an incomplete model of English auctions featuring multivariate unob-

served heterogeneity delivers a novel and previously unavailable characterization of sharp bounds on

the distribution of bidder valuations. Section 7 concludes. All proofs are provided in the Appendix.

1.2 Notation

Capital Roman letters A denote point-valued random variables and lower case letters a denote

particular point-valued realizations. For probability measure P, P (·|a) is used to denote the con-

ditional probability measure given A = a. RA1···Am denotes the joint support of random vectors

A1, ..., Am, RA1|a2 denotes the support of random vector A1 conditional on A2 = a2, qA|B (τ |b)
denotes the τ conditional quantile of A given B = b. F (RA) and K (RA) denote the collections

of all closed and compact subsets, respectively, of the support of A. A ‖ B means that random

vectors A and B are stochastically independent. ∅ denotes the empty set. ∧ denotes the logical
“and” operator. Calligraphic font (S) is reserved for sets, and sans serif font (S) is reserved for
collections of sets. The symbol ⊆ indicates nonstrict set inclusion, cl (A) denotes the closure of A,
∂A denotes the boundary of A, and Ch (S|z) denotes the containment functional of random set

U (Y,Z;h) conditional on Z = z, defined in Section 3.2. The notation F 4 A indicates that the
distribution F of a random vector is selectionable with respect to the distribution of random set

A, and A ∈ Sel(A) indicates that random variable A is a measurable selection of random set A,
both as defined in Section 3.1. E [A] refers to the Aumann Expectation of A, defined in Section
5.2. 1 [E ] denotes the indicator function, taking the value 1 if the event E occurs and 0 otherwise.

Rm denotes m dimensional Euclidean space, R1 is abbreviated to R and for any vector v ∈ Rm, ‖v‖
indicates the Euclidean norm: ‖v‖ =

√
v21 + · · ·+ v2m. In order to deal with sets of measure zero

and conditions required to hold almost everywhere, we use the “sup”and “inf”operators to denote

“essential supremum”and “essential infimum”with respect to the underlying measure when these

operators are applied to functions of random variables (e.g. conditional probabilities, expectations,

or quantiles). Thus supz∈Z f (z) denotes the smallest value of c ∈ R such that P [f (Z) > c] = 0

and infz∈Z f (z) denotes the largest value of c ∈ R such that P [f (Z) < c] = 0.
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2 GIV Models

First there is a formal statement of the restrictions comprising GIV models, then examples of GIV

models are provided.

2.1 GIV Models

At various points in the development, the following restrictions are employed.

Restriction A1: (Y,Z, U) are random vectors defined on a probability space (Ω, L,P), endowed

with the Borel sets on Ω. The support of (Y,Z, U) is a subset of a finite-dimensional Euclidean

space. �
Restriction A2: A collection of conditional distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
,

is identified by the sampling process, where for all T ⊆ RY |z, FY |Z (T |z) ≡ P [Y ∈ T |z]. �
Restriction A3: There is an L-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y, Z, U) = 0] = 1,

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. �
Restriction A4: The pair

(
h,GU |Z

)
belongs to a known set of admissible structuresM. �

Restriction A5: U (Y,Z;h) is closed almost surely P [·|z], each z ∈ RZ . �
Restriction A6: Y (Z,U ;h) is closed almost surely P [·|z], each z ∈ RZ . �

Restriction A1 defines the probability space on which (Y,Z, U) reside and restricts their sup-

port to Euclidean space.5 Restriction A2 requires that for each z ∈ RZ , FY |Z (·|z) is identified.
Restriction A3 posits the existence of structural relation h, and provides notation for the collection

of conditional distributions GU |Z of U given Z.

Restriction A4 imposes modelM, the collection of admissible structures
(
h,GU |Z

)
. Unlike the

previous restrictions, it is refutable based on knowledge of FY |Z in that it is possible that there is
no
(
h,GU |Z

)
∈M such that P [h (Y, Z, U) = 0] = 1. In such cases the identified set of structures is

empty, indicating model misspecification.

5The restriction of the support of unobserved heterogeneity to a subset of Euclidean space is convenient, but not
required for our identification analysis. What is essential for our use of random set theory is that the support of
U is a locally compact Hausdorff second countable topological space. Euclidean space fulfills this requirement. For
further details we refer to Molchanov (2005).
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Restrictions A5 and A6 restrict U (Y, Z;h) and Y (Z,U ;h) to be random closed sets. The pur-

pose of these restrictions is to enable use of results from random set theory characterizing the

distributions of measurable selections of random closed sets.6 These restrictions are satisfied for

example if M specifies that all admissible h are continuous in their first and third arguments,

respectively, but can also hold more generally. A given econometric model can generally be rep-

resented through a variety of different but substantively equivalent structural functions h, and

judicious choice of this function can often be made to ensure these requirements are satisfied. See

Section 2.2 for examples.7

Collections of admissible structural functions and families of collections of distributions GU |Z
are defined as the following projections of the modelM.

H ≡
{
h :
(
h,GU |Z

)
∈M for some GU |Z

}
,

GU |Z ≡
{
GU |Z :

(
h,GU |Z

)
∈M for some h

}
.

A model comprises restrictions on structural functions and on the joint distribution of (U,Z),

imposed by specification of admissible structures M in Restriction A4. Structural functions can

be required to belong to a parametric family; there may be semiparametric restrictions, as in

index models; there may be a purely nonparametric specification, perhaps with monotonicity or

shape restrictions. Admissible collections of conditional distributions GU |Z may be restricted to
parametric families but there may be far less restrictive specifications. Many models of interest will

impose restrictions on the dependence of U and Z such as mean, quantile or complete stochastic

independence. Our results allow the impact on identification of all these types of restrictions to be

studied. Various types of restrictions on GU |Z are considered in Section 5 and the auction model
example demonstrates the way in which restrictions are incorporated in structural functions.

The identifying power of a model in the context of a particular process depends not only on the

restrictions of the model but also on the identified joint distribution of observable (Y,Z) delivered by

the process. If the distribution of (Y,Z) satisfies certain restrictions then a model may point identify

certain structural features. Examples include the rank and completeness conditions that appear

when using respectively linear simultaneous equations models and nonparametric IV models. In

this paper we focus on the characterization of identified sets delivered by general classes of models

and we do not consider conditions under which particular models have point identifying power.

Consequently there is no consideration here of the impact on identification of alternative forms of

the joint distribution of (Y,Z).

6The definition of a measurable selection of a random set is provided in Section 3.
7 Importantly, the realizations of Y (Z,U ;h) and U (Y,Z;h) may be unbounded, as closedness merely requires that

they contain their limit points. Moreover, whether these sets are closed depends on the underlying topological space.
We use the Euclidiean topology on Rd throughout, but in some cases other topological spaces could be used to
establish closedness. For instance, if U (Y,Z;h) can take only a finite number of realizations, then this set is closed
in the discrete topology on {U (Y, z;h) : z ∈ RZ}, see e.g. Sutherland (2009), page 94, Exercise 9.1.
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2.2 Examples

2.2.1 A model of English auctions

A key application worked through in detail in Section 6 is the incomplete model of English auctions

introduced in Haile and Tamer (2003). M bidders have continuously and independently distributed

valuations with common distribution function Az(·) conditional on auction characteristics Z = z.

Random variables V = (V1, · · · , VM ) and Y ≡ (Y1, . . . , YM ) denote respectively ordered valuations

and ordered final bids.8 There are restrictions: Ym ≤ Vm for all m ∈ {1, . . . ,M}, and VM−1 ≤ YM ,
expressing the idea that no person bids more than their valuation and no person lets another win

at a price they are willing to beat.

It is convenient to construct the model in terms of uniform order statistics, U = (U1, . . . , UM ),

that is, ordered identically and independently distributed uniform random variables each with

support on [0, 1]. A structural function which captures the restrictions on bidder behavior is

h(y, z, u) = max{uM−1 −Az(yM ), 0}+

M∑
m=1

max{Az(ym)− um, 0}

where Vm = A−1z (Um) has been employed and A−1z is the quantile function associated with the

distribution function Az. Let RU denote the orthoscheme of the unit M -cube in which u1 ≤ u2 ≤
· · · ≤ uM . The U -level set delivered by the structural function is

U (y, z;h) =

{
u ∈ RU : (Az(yM ) ≥ uM−1) ∧

(
M∧
m=1

(Az(ym) ≤ um)

)}
(2.1)

with Y -level set defined similarly.9

2.2.2 IV models with set-valued residuals

An important class of models in the broad class of models covered here are those in which in-

strumental variable exclusion and independence restrictions play a central role and unobservable

variables may be set-valued functions of observed endogenous and exogenous variables. Examples

include the binary outcome threshold crossing IV model studied in Chesher (2010) and Chesher

and Rosen (2013), the ordered outcome IV model studied in Chesher and Smolinski (2012) and the

multiple discrete choice model with endogenous explanatory variables and IV restrictions studied

in Chesher, Rosen, and Smolinski (2013). This paper develops results which apply not only in

these cases where the outcome variables of interest are discrete but also to cases with continuous
8 In ordered lists higher indices indicate larger values and inequalities in random variables hold almost surely.
9For Y (u, z;h) replace “u ∈ RU”with “y ∈ RY ”in (2.1), where RY is the support of the distribution of ordered

final bids.
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outcomes.

Here are two examples of IV models with set-valued residuals in which outcomes are continuous.

Example 1. Random coeffi cients model with endogenous explanatory variable. A con-
tinuous outcome random coeffi cients model has structural function

h(y, z, u) = y1 − z1γ − (β2 + u2) y2 − (β1 + u1) . (2.2)

The random coeffi cients are (β1 + U1) and (β2 + U2), with means β1 and β2, respectively. The

coeffi cient γ multiplying exogenous variables in h could also be random. The level sets are

Y (u, z;h) = {(z1γ + (β2 + u2) y2 + (β1 + u1) , y2) : y2 ∈ RY2} ,

U (y, z;h) = {u ∈ RU : u1 = y1 − z1γ − β1 − β2y2 − u2y2} . (2.3)

This is an incomplete limited information single equation instrumental variable model, in contrast

to the complete simultaneous equations random coeffi cient model studied by Masten (2014), in

which were established conditions for point identification of the marginal distributions of the random

coeffi cients.

Example 2. Interval censored endogenous explanatory variables. This model extends

one of the cases studied in Manski and Tamer (2002) in which an exogenous explanatory variable

is censored to situations in which the censored explanatory variable is endogenous. Let g (·, ·, ·) :

R × Rk × R → R be increasing in its first argument and strictly increasing and continuous in its
third argument such that

Y1 = g (Y ∗2 , Z1, U) ,

where endogenous variable Y ∗2 ∈ R is interval censored with P [Y2l ≤ Y ∗2 ≤ Y2u] = 1 for observed

variables Y2l, Y2u. No further restriction is placed on the process determining the realizations of

Y2l, Y2u. The structural function is

h(y, z, u) = max {y1 − g (y2u, z1, u) , 0}+ max {g (y2l, z1, u)− y1, 0} ,

with y ≡ (y1, y2l, y2u) and y2l ≤ y2u. The resulting level sets are

Y (u, z;h) = {y ∈ RY : g (y2l, z1, u) ≤ y1 ≤ g (y2u, z1, u) ∧ y2l ≤ y2u} ,

U (y, z;h) =
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]
,

where the function g−1 (·, ·, ·) is the inverse of g (·, ·, ·) with respect to its third argument, so that
for all y2, z1, and u, g−1 (y2, z1, g (y2, z1, u)) = u.

Characterizations of identified sets for both these models are given in the working paper Chesher
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and Rosen (2015) where there are also examples of a model with endogenous censoring and a

model with endogenous variables measured with error. The methods of this paper also apply to

simultaneous equations and triangular models, see for instance Chesher and Rosen (2012) for some

examples involving incomplete models with discrete endogenous variables.

3 Observational Equivalence

3.1 Observational Equivalence and Selectionability in Outcome Space

The conventional definition of observational equivalence found in the econometrics literature applies

when each structure, m ∈M, delivers a single collection of conditional distributions:

PY |Z (m) ≡ {PY |Z (·|z;m) : z ∈ RZ}

where PY |Z (·|z;m) is the conditional distribution of Y given Z = z delivered by structure m.10 In

such complete models structures m and m′ are observationally equivalent if PY |Z (m) = PY |Z (m′)

almost surely.

Structures admitted by incomplete models may generate more than one collection of conditional

distributions. Let PY |Z (m) denote the set of collections of conditional distributions that can be

generated by a structure m. Considering two structures m and m′ there may be a collection of con-

ditional distributions F∗Y |Z which lies in both PY |Z (m) and PY |Z (m′) and a collection F∗∗Y |Z which
lies in only one of the collections PY |Z (m) and PY |Z (m′). Structures m and m′ are observationally

equivalent in identification analysis employing F∗Y |Z but not in identification analysis employing
F∗∗Y |Z .

When we work with incomplete models, as in this paper, observational equivalence is defined

with respect to the collection of distributions FY |Z under consideration.11 The definition of ob-

servational equivalence uses random set theory constructs, specifically measurable selections of a

random set and selectionability of probability distributions with respect to the distribution of a

random set, defined now.12

Definition 1 LetW andW denote a random vector and random set defined on the same probability

space. W is a measurable selection of W, denoted W ∈ Sel (W), if W ∈ W with probability one.

10See for example Koopmans and Reiersøl (1950), Hurwicz (1950), Rothenberg (1971), Bowden (1973), and Matzkin
(2007, 2008).
11 In our formulation of observational equivalence and characterizations of identified sets, we continue to work with

conditional distributions of endogenous and latent variables, FY |Z (·|z) and GU|Z (·|z), respectively, for almost every
z ∈ RZ . Knowledge of the distribution of Z combined with FY |Z (·|z) or GU|Z (·|z) a.e. z ∈ RZ is equivalent to
knowledge of the joint distribution of (Y,Z) denoted FY Z , or that of (U,Z), denoted GUZ , respectively. It is formally
shown in Appendix B of Chesher and Rosen (2015) that our characterizations using selectionability conditional on
Z = z, a.e. z ∈ RZ , are equivalent to using analogous selectionability criteria for the joint distributions FY Z or GUZ .
12See Molchanov (2005). These definitions are Definition 2.2 on page 26 and Definition 2.19 on page 34.
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The distribution FW of random vectorW is selectionable with respect to the distribution of random
set W, abbreviated FW 4 W, if there exists a random vector W̃ distributed FW and a random set

W̃ with the same distribution as W such that W̃ ∈ Sel
(
W̃
)
.

In the context of this paper a structure
(
h,GU |Z

)
induces a distribution for the random outcome

set Y (U,Z;h) conditional on Z = z, for all z ∈ RZ . The distributions of Y given Z = z that are

selectionable with respect to the distribution of Y (U,Z;h) given Z = z for almost every z ∈ RZ
are precisely those distributions for which h (Y,Z, U) = 0 can hold with probability one for the

given structure
(
h,GU |Z

)
. This leads to the following definitions.13

Definition 2 Under Restrictions A1-A3, two structures
(
h,GU |Z

)
and

(
h′,G′U |Z

)
are observa-

tionally equivalent with respect to a given collection of conditional distributions
{
FY |Z (·|z) : z ∈ RZ

}
,

if FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) and FY |Z (·|z) 4 Y (U, z;h′) when U ∼ G′U |Z (·|z)
for almost every z ∈ RZ .

Definition 3 Under Restrictions A1-A4, the identified set of structures
(
h,GU |Z

)
with respect

to the collection of distributions FY |Z are those admissible structures such that the conditional

distributions FY |Z (·|z) ∈ FY |Z are selectionable with respect to the conditional distributions of

random set Y (U, z;h) when U ∼ GU |Z (·|z), a.e. z ∈ RZ :

M∗ ≡
{(
h,GU |Z

)
∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) , a.e. z ∈ RZ

}
. (3.1)

A definition of set identification of structural features follows directly from Definition 3. Any

functional, ψ
(
h,GU |Z

)
, of a structure

(
h,GU |Z

)
is a structural feature and its identified set is a

projection of the setM∗.14

Definition 4 The identified set of structural features ψ (·, ·) under Restrictions A1-A4 is the
projection ofM∗

Ψ ≡
{
ψ
(
h,GU |Z

)
:
(
h,GU |Z

)
∈M∗

}
.

The structural features of interest depend on the circumstances encountered. In this paper the

focus is on the identified set of structuresM∗ from which identified sets of structural features are

obtained by projection.

3.2 Observational Equivalence and Selectionability in U-Space

In this Section we set out an equivalent, and in many cases more useful, characterization of ob-

servational equivalence in terms of (a) random sets U (Y, Z;h) whose distribution is determined
13The identified setM∗ in Definition 3 depends upon the collection of conditional distributions FY |Z , although we

do not make this dependence explicit in our notation.
14The identified set of structural features Ψ depends on both M and the conditional distributions FY |Z , but for

ease of notation we suppress this dependence.

12



by the structural function, h, and a collection of conditional distributions of outcomes FY |Z and
(b) selectionability of the distributions of unobservables, GU |Z , with respect to the distributions of
these random U -level sets. This alternative characterization follows directly from a simple duality

property of the two types of level sets of structural functions, namely that for all h and z:

u∗ ∈ U (y∗, z;h)⇐⇒ y∗ ∈ Y (u∗, z;h) ,

which is so because each inclusion holds if and only if h (y∗, z, u∗) = 0.

The advantage of this new characterization is that it allows direct imposition of restrictions on

the collection of distributions GU |Z admitted by the modelM. Such restrictions —for example mean,

quantile, full independence, and parametric restrictions —are the bread and butter of econometrics.

The characterization is set out in the following two theorems.

Theorem 1 Let Restrictions A1-A3 hold. Then for any z ∈ RZ , FY |Z (·|z) is selectionable with
respect to the conditional distribution of Y (U,Z;h) given Z = z when U ∼ GU |Z (·|z) if and only
if GU |Z (·|z) is selectionable with respect to the conditional distribution of U (Y, Z;h) given Z = z

when Y ∼ FY |Z (·|z).

Theorem 2 Let Restrictions A1-A3 hold. Then (i) structures
(
h,GU |Z

)
and

(
h∗,G∗U |Z

)
are obser-

vationally equivalent with respect to FY |Z if and only if GU |Z (·|z) and G∗U |Z (·|z) are selectionable
with respect to the conditional (on Z = z) distributions of random sets U (Y, Z;h) and U (Y, Z;h∗),

respectively, a.e. z ∈ RZ , where the conditional distributions of these random sets are delivered by

the collection of distributions FY |Z ; and (ii) if additionally Restriction A4 holds, then the identi-
fied set of structures

(
h,GU |Z

)
are those elements of M such that GU |Z (·|z) is selectionable with

respect to the conditional (on Z = z) distribution of U (Y, Z;h) a.e. z ∈ RZ , where the conditional
distributions of U (Y,Z;h) are delivered by FY |Z .

Theorem 2 expresses observational equivalence and the characterization of the identified set

of structures
(
h,GU |Z

)
in terms of selectionability of members of GU |Z relative to the conditional

distribution of the random residual set U (Y, Z;h). Any characterization of the selectionability

condition in Theorem 2 delivers a characterization of the identified set.

One such characterization that applies when U (Y, Z;h) is a random closed set, given in Corollary

1, uses the Artstein Inequality characterization of selectionability, see e.g. Artstein (1983), Norberg

(1992), and Molchanov (2005, Section 1.4.8). This employs the conditional containment functional

of U (Y,Z;h), defined as follows.

Ch (S|z) ≡ P [U (Y,Z;h) ⊆ S|z]
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Corollary 1 Under Restrictions A1-A5, the identified set can be written

M∗ ≡
{(
h,GU |Z

)
∈M : ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) , a.e. z ∈ RZ

}
, (3.2)

where F (RU ) denotes the collection of all closed subsets of RU .

There are inequalities in this characterization for almost every value of the instrument z ∈ RZ
and for all closed subsets of RU . So the results in the next Section showing how the number of sets
of values of U defining the characterization ofM∗ can be reduced are crucial.

4 Core Determining Test Sets

A collection Q (h, z) of core-determining test sets S is characterized for any h, and any z ∈ RZ ,
such that if, for all S in Q (h, z)

Ch (S|z) ≤ GU |Z (S|z) , (4.1)

then the same inequality holds for all closed sets S ⊆ RU .15 Consequently, the characterization of
M∗ in (3.2) can be written with Q (h, z) replacing F (RU ).16 The following definitions are employed.

Definition 5 The conditional support of random set U (Y,Z;h) given Z = z is U (h, z).

U (h, z) ≡
{
U ⊆ RU : ∃y ∈ RY |z such that U = U (y, z;h)

}
.

U∗ (h, z) is the collection of all sets that are unions of elements of U (h, z):

U∗ (h, z) ≡
{
U ⊆ RU : ∃Y ⊆ RY |z such that U = U (Y, z;h)

}
,

where

U (Y, z;h) ≡
⋃
y∈Y
U (y, z;h) .

For any S ⊆ RU , h, and z define the following sub-collection of U (h, z):

US (h, z) ≡ {U ∈ U (h, z) : U ⊆ S} .
15Core-determining sets may also be dependent upon GU|Z (·|z) as set out in Theorem 3 below, but this is not

made explicit in the notation.
16Galichon and Henry (2011) introduced core-determining sets for identification analysis considering sets in outcome

space and characterizing core-determining sets for incomplete models that satisfy a certain monotonicity requirement.
Here no monotonicity condition is imposed and their definition is extended by introducing core-determining sets for
the characterizations in U -space developed in Section 3, and by allowing core-determining sets to be specific to the
structural relation h and covariate value z.
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Lemma 1 establishes that, for any (h,GU |Z) and z, if the inequality (4.1) holds for all sets S in
the collection of unions U∗ (h, z) then it holds for all S ⊆ RU . Theorem 3 defines a collection of

core-determining test sets Q (h, z), which is a refinement of U∗ (h, z).

Lemma 1 Let Restrictions A1-A3 hold. Let z ∈ RZ , h ∈ H, and S ⊆ RU . Let US (h, z) denote

the union of all sets in US (h, z),

US (h, z) ≡
⋃

U∈US(h,z)

U . (4.2)

If Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) , then Ch (S|z) ≤ GU |Z (S|z) .

Theorem 3 Let Restrictions A1-A3 hold. For any (h, z) ∈ H ×RZ , let Q (h, z) ⊆ U∗ (h, z), such

that for any S ∈ U∗ (h, z) with S /∈ Q (h, z), there exist nonempty collections S1,S2 ⊆ US (h, z) with

S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T , S2 ≡
⋃
T ∈S2

T , and GU |Z (S1 ∩ S2|z) = 0, (4.3)

with S1,S2 ∈ Q (h, z). Then Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z) implies that Ch (S|z) ≤
GU |Z (S|z) holds for all closed S ⊆ RU , so that the collection of sets Q (h, z) is core-determining.

This Theorem implies, for example, that if h is such that all level sets U (y, z;h) are connected,

then sets S which can only be written as unions of disjoint sets in U (h, z) can be excluded from

consideration. Corollary 2 gives cases in which certain containment functional inequalities can be

replaced by equalities.

Corollary 2 Let ∂S denote the boundary of set S. Define

QE (h, z) ≡
{
S ∈ Q (h, z) : GU |Z (∂S|z) = 0 and ∀y ∈ RY either U (y, z;h) ⊆ S or U (y, z;h) ⊆ cl(Sc)

}
.

Under the conditions of Theorem 3, the collection of equalities and inequalities

Ch (S|z) = GU |Z (S|z) , all S ∈ QE (h, z) ,

Ch (S|z) ≤ GU |Z (S|z) , all S ∈ QI (h, z) ≡ Q (h, z) \QE (h, z) .

holds if and only if Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z).

There are two classes of models in which all members of Q (h, z) belong to QE (h, z), so that

the identified set may be characterized by only conditional moment equalities.

1. Models where U (Y, Z;h) is a singleton set with probability one. This includes models with

an additive unobservable as in the classical linear IV model, the nonparametric IV model of

Newey and Powell (2003), and the quantile IV model of Chernozhukov and Hansen (2005).
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2. Complete models for which Y (U,Z;h) is a singleton with probability one. In such models

for any z and any y 6= y′ the sets U (y, z;h) and U (y′, z;h) have measure zero intersection.

Since Q (h, z) is a collection of sets that are unions of sets on the support of U (Y,Z;h), for

all (y, z), any h, and all S ∈ Q (h, z), either U (y, z;h) ⊆ S or U (y, z;h) ⊆ cl(Sc).

In models in which all endogenous variables are discrete with finite support the collection of

core determining sets is finite, and it is possible to enumerate them all. An algorithm for doing

this is provided in Chesher and Rosen (2012). In models with continuous endogenous variables

such as the auction model there is typically an uncountable infinity of core determining sets and in

applications a selection must be made. This is discussed further in Sections 6 and 7.17

5 Identified Sets Under Restrictions on the Distribution of (U,Z)

Theorem 2 provides a characterization of the structures
(
h,GU |Z

)
contained in the identified set

delivered by a modelM and a collection of distributions FY |Z . A key element of econometric models
are restrictions on the conditional distributions of unobserved variables. In this Section we show

how some commonly employed restrictions on admissible collections of conditional distributions

GU |Z refine the characterization of an identified set. The restrictions considered are full stochastic
independence, conditional mean and conditional quantile independence.

5.1 Stochastic Independence

Restriction SI: For all collections GU |Z of conditional distributions admitted byM, U and Z are

stochastically independent. �
Under Restriction SI conditional distributions GU |Z(·|z) cannot vary with z and we write GU

in place of the collection GU |Z where for all z, GU (·) = GU |Z(·|z).
It follows from Theorem 2 that a structure (h,GU ) ∈ M belongs to M∗ if and only if GU is

selectionable with respect to the conditional distribution of the random set U (Y, Z;h) induced by

FY |Z (·|z) a.e. z ∈ RZ . Four characterizations of such structures are set out in Theorem 4.

Theorem 4 Let Restrictions A1-A5 and SI hold. Then:

M∗ =
{

(h,GU ) ∈M : GU (·) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}

(5.1)

=

{
(h,GU ) ∈M : ∀SI ∈ QI (h, z) , ∀SE ∈ QE (h, z) ,

Ch (SI |z) ≤ GU (SI) , Ch (SE |z) = GU (SE) , a.e. z ∈ RZ

}
(5.2)

17The working paper Chesher and Rosen (2015) additionally explains how particular selections are made in numer-
ical illustrations of identified sets for Examples 1 and 2 in Section 2.2 in which endogenous variables are continuous.
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If Restriction A6 also holds, then equivalently:

M∗ =
{

(h,GU ) ∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU (·) , a.e. z ∈ RZ
}
, (5.3)

=

{
(h,GU ) ∈M : ∀K ∈ K (RY ) ,

FY |Z (K|z) ≤ GU {Y (U, z;h) ∩ K 6= ∅} , a.e. z ∈ RZ

}
, (5.4)

where K (RY ) denotes the collection of compact sets in RY .

Theorem 4 presents alternative representations of the identified set under Restriction SI. Char-

acterizations (5.3) and (5.1) arise directly on application of the restriction to Definition 3.1 and

Theorem 2, respectively. The characterization (5.2) applies Theorem 3 and Corollary 2 to define

the identified set in terms of the conditional containment functional of the random set U (Y,Z;h).

This representation employs core-determining sets to reduce the number of moment conditions in

the characterization, and distinguishes which ones hold as equalities and which as inequalities.

The characterization (5.4) defines the identified set through conditional moment inequalities

involving the capacity functional of Y (U,Z;h). This delivers the characterizations provided in

Appendix D.2 of BMM11 and in Galichon and Henry (2011) when applied to incomplete models of

games. In general this characterization using random sets in Y -space, RY , requires the inequalities
to hold for all compact sets K ⊂ RY . Simplification is sometimes possible: Galichon and Henry
(2011) provides core-determining sets in RY when a certain monotonicity condition holds; BMM11
Appendix D.3 provides alternative conditions under which some inequalities are redundant.

In many cases, the representation (5.2) will be the simplest to use. This characterization uses

the containment functional of the random set U (Y,Z;h), which has support in U -space. This allows

the use of core determining sets on RU given by Theorem 3, which is in general a smaller collection

of sets than all compact sets in Y -space. The ability to exploit the structure of sets U (Y, Z;h) for

this purpose is a benefit of working in the space of unobserved heterogeneity. Our construction is

based on core determining sets specific to each (h, z) pair, while the collections of core-determining

sets working in Y -space characterized by Galichon and Henry (2011) under monotonicity are not.

A further difference between characterizations (5.2) and (5.4) is the way in which they incorpo-

rate restrictions on the distribution of unobserved heterogeneity. Given an admissible distribution

GU , use of characterization (5.4) requires computation of the probability that Y (U, z;h) hits K for
each compact set K. This has typically been achieved by means of simulation from each conjectured
distribution GU , see e.g. Appendix D.2 of BMM11 and Henry, Meango, and Queyranne (2015).

The characterization (5.2) in U -space shows that there is an alternative to simulating draws

from the distribution of unobservables. Computation using (5.2) requires computation of GU (S)

for each conjectured distribution GU and each core-determining set S, which can be done either by

17



simulation or by numerical integration. Regarding P [U (Y, Z;h) ⊆ S|z], there is the equivalence

P [U (Y, Z;h) ⊆ S|z] = P [Y ∈ A (S, Z;h) |z] ,

where

A (S, Z;h) ≡ {y ∈ RY : U (y, Z;h) ⊆ S} ,

is the set of values of y that can occur only if U (y, Z;h) ⊆ S. Thus P [U (Y,Z;h) ⊆ S|z] is the
probability of an event concerning only the observed variables (Y, Z), which is point-identified and

can be computed directly as a function of FY |Z (·|z). For instance, an analog estimator using the
empirical distribution of (Y,Z) based on n observations with discrete Z is the sample average

P̂n [U (Y, Z;h) ⊆ S|z] ≡ 1

nz

∑n

i=1
1 [yi ∈ A (S, z;h) ∧ zi = z] ,

with nz =
∑n
i=1 1 [zi = z]. With continuous Z a kernel estimator could be used for P̂n [U (Y,Z;h) ⊆ S|z].

The particular form of this probability depends of course on the structural functions, h, admitted

by the model under consideration.18

The characterization of identified sets employing random sets in U -space leads directly to Corol-

lary 3 which characterizes bounds on the structural function h under Restriction SI, without explicit

reference to GU .

Corollary 3 If Restrictions A1-A5 and SI hold, and GU |Z is otherwise unrestricted, the set

H∗ =

{
h ∈ H : ∀S ∈ S, sup

z∈RZ
Ch (S|z) ≤ inf

z∈RZ
(1− Ch (Sc|z))

}
(5.5)

comprises bounds on h, such that H∗ ⊆ H∗, for any collection of test sets S. If, in addition,

GU (∂S) = 0, then (5.5) may be strengthened to sup
z∈RZ

Ch (cl (S) |z) ≤ inf
z∈RZ

(1− Ch (cl (Sc) |z)).

In (5.5) 1 − Ch (Sc|z) = P[U(Y, Z;h) ∩ S 6= ∅|Z = z] is the conditional capacity functional

of U(Y, Z;h) given Z = z. The result is obtained using an upper bound on GU (S) produced

by applying the containment functional inequalities in Theorem 4 to Sc, the complement of S, in
conjunction with the containment functional inequality (4.1). This simple projection result is useful

in situations in which GU is not parametrically specified, characterizing bounds on the structural

function without the need to explicitly posit distributions of unobserved U that, coupled with these

structural functions, could have delivered the data. The condition GU (∂S) = 0 holds in many

instances, for example when sets S are convex and GU is restricted to be absolutely continuous
18For explicit examples of the form of P [U (Y,Z;h) ⊆ S|z] in terms of events involving observable variables, see

expressions (6.6), (6.7), and (6.8) in analysis of the auction model of Section 6, and also the containment functional
inequalities in Section 6.2 and Supplementary Appendix C of the working paper version Chesher and Rosen (2015).
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with respect to Lebesgue measure by Theorem 1 of Lang (1986). The continuity restriction rules

out for example the possibility of unobservable random variables having point mass at threshold

values in discrete outcome models, in which case the strengthened version of inequalities can be

tighter.

5.2 Mean Independence

Restriction MI: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

satisfying E [U |z] = c, a.e. z ∈ RZ , for some fixed, finite c belonging to a known set C ⊆ RU . �
This restriction limits the collection GU |Z to those containing conditional distributions GU |Z(·|z)

such that E [U |z] is equal to a constant c which does not vary with z. This covers cases where
numerical values are provided for some components of c but not for others. For instance, in a model

with bivariate U , Restriction MI with C = {(c1, c2) : c1 = 0, c2 ∈ R} restricts E [U1|z] = 0, which

could be a normalization, and restricts E [U2|z] to be invariant with respect to z.
Under Restriction MI it is convenient to characterize the selectionability criterion of Theorem

2 using the Aumann expectation.19

Definition 6 The Aumann expectation of random set A is

E [A] ≡ cl {E [A] : A ∈ Sel (A) and E [A] <∞}

Molchanov (2005, p. 151). The Aumann expectation of random set A conditional on B = b is

E [A|b] ≡ cl {E [A|b] : A ∈ Sel (A) and E [A|b] <∞} .

A characterization of the identified sets for structural function h and for the structure
(
h,GU |Z

)
under Restriction MI is given in the following Theorem.

Theorem 5 Let Restrictions A1-A5 and MI hold and suppose that (Ω, L,P) is non-atomic. Then

the identified set for structural function h comprises those functions h such that some c ∈ C is an
element of the Aumann expectation of U (Y, Z;h) conditional on Z = z a.e. z ∈ RZ :

H∗ = {h ∈ H : ∃c ∈ C s.t. for almost every z ∈ RZ , c ∈ E [U (Y, Z;h) |z]} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) 4 U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

19For random sets defined on finite-dimensional spaces, such as those considered under Restriction A3, application
of the closure operator in Definition 6 is not necessary, see for example Nguyen (2006) p.184.
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where by virtue of Restriction MI all structures
(
h,GU |Z

)
∈M∗ ⊆M are such that for some c ∈ C,

E [U |z] = c a.e. z ∈ RZ .

Knowledge of properties of the random set U (Y,Z;h) can be helpful in characterizing its

Aumann expectation, and consequently in determining whether any particular h is in H∗. For
example, if U (Y,Z;h) is integrable, then from Molchanov (2005, Theorem 2.1.47-iv, p. 171),

c ∈ E [U (Y, Z;h) |z] if and only if

inf
v∈RU :‖v‖=1

{
E [m (v,U (Y, Z;h)) |z]− v′c

}
≥ 0, (5.6)

where for any set S,
m (v,S) ≡ sup {v · s : s ∈ S}

denotes the support function of S evaluated at v.20 BMM11 employed Molchanov (2005, Theo-

rem 2.1.47-iv, p. 171) when using the conditional Aumann expectation of random outcome set

Y (Z,U ;h) to characterize its measurable selections. As was the case in their analysis, use of the

support function inequality (5.6) can provide computational tractability. This is particularly so

when the dimension of RU exceeds 1, as it can be used to circumvent explicit computation of the

Aumann expectation for the purpose of verifying whether c ∈ E [U (Y,Z;h) |z] for some c ∈ C.
In comparison to the sharp bound characterizations of BMM11, if the structural function h is

additively separable in Y , the two representations are equivalent, differing only by a trivial location

shift. On the other hand, if h is not additively separable in U , the conditional mean restriction

MI cannot generally be written as a conditional mean restriction on Y , and previous identification

results using the Aumann Expectation in Y -space appear inapplicable. Theorem 5 provides a

characterization for the identified set in such cases. The insight of BMM11 that the support

function can be used to bypass explicit computation of the Aumann expectation of a multivariate

random set remains applicable.

Theorem 5 can be generalized to characterize H∗ under more general forms of conditional mean
restrictions as expressed in Restriction MI*.

Restriction MI*: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

such that for some known function d (·, ·) : RU × RZ → Rkd, E [d (U,Z) |z] = c a.e. z ∈ RZ , for
some fixed c belonging to a known set C ⊆ RU , where d (u, z) is continuous in u for all z ∈ RZ . �

Restriction MI∗ requires that the conditional mean given Z = z of some function d(U,Z) taking

values in Rkd does not vary with respect to z. This restriction can accommodate models that
impose conditional mean restrictions on functions of unobservables U , for example homoskedasticity

restrictions or restrictions on covariances of elements of U . To express the identified set delivered

20A random set is integrable if it has at least one measurable selection with finite L1 norm, see Molchanov (2005,
Definition 1.1.p. 146 and Definition 1.11(ii) pp. 150-151).
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under restriction MI∗ define

D (y, z;h) ≡ {d (u, z) : u ∈ U (y, z;h)} .

Then D (Y, Z;h) is a random set of feasible values for d (U,Z) given observed (Y, Z). This set is

closed under the requirement of Restriction MI* that d (·, z) is continuous for each z. The arguments
that deliver Theorem 5 yield the following result.

Corollary 4 Let Restrictions A1-A5 and MI* hold and suppose that (Ω, L,P) is non-atomic. Then

the identified set for structural function h are those h such that there exists at least one c ∈ C that
is an element of the Aumann expectation of D (Y, Z;h) conditional on Z = z a.e. z ∈ RZ :

H∗ = {h ∈ H : ∃c ∈ C s.t. for almost every z ∈ RZ , c ∈ E [D (Y,Z;h) |z]} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) 4 U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

where, by Restriction MI∗, all structures
(
h,GU |Z

)
∈ M∗ ⊆ M are such that for some c ∈ C,

E [d (U,Z) |z] = c, a.e. z ∈ RZ .

As before, the support function can be useful for computation because it can be used to verify

whether c ∈ E [D (Y,Z;h) |z] by use of (5.6) with D (Y, Z;h) in place of U (Y, Z;h) as long as

D (Y,Z;h) is integrable.

5.3 Quantile Independence

Conditional quantile restrictions on the distribution of unobserved U can also be accommodated.

This is illustrated in a simple setting under Restriction IS.

Restriction IS (interval support): U ∈ R and for all (y, z) ∈ RY Z ,

U (y, z;h) = [u (y, z;h) , u (y, z;h)] , (5.7)

where possibly u (y, z;h) = −∞ or u (y, z;h) = +∞, in which case the corresponding endpoint of
the interval (5.7) is open. �

The conditional quantile restriction is as follows.

Restriction QI: For some known τ ∈ (0, 1) and some known set C ⊆ R, GU |Z comprises all

collections GU |Z of conditional distributions for U given Z that satisfy qU |Z (τ |z) = c, a.e. z ∈ RZ
for some c ∈ C. �
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Theorem 6 Let Restrictions A1-A5, IS, and QI hold. Then (i) the identified set for structural
function h is

H∗ =

{
h ∈ H : ∃c ∈ C s.t. sup

z∈RZ
P [u (Y, Z;h) < c|z] ≤ τ ≤ inf

z∈RZ
P [u (Y,Z;h) ≤ c|z]

}
. (5.8)

(ii) If u (Y,Z;h) and u (Y,Z;h) are continuously distributed conditional on Z = z, a.e. z ∈ RZ ,
then an equivalent formulation of H∗ is given by

H∗ =

{
h ∈ H : ∃c ∈ C s.t. sup

z∈RZ
q (τ , z;h) ≤ c ≤ inf

z∈RZ
q (τ , z;h)

}
, (5.9)

where q (τ , z;h) and q (τ , z;h) are the τ -quantiles of respectively u (Y,Z;h) and u (Y, Z;h), (iii) The

identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) 4 U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

where following from Restriction QI, all structures
(
h,GU |Z

)
∈ M∗ ⊆ M are such that for some

c ∈ C, qU |Z (τ |z) = c, a.e. z ∈ RZ .

Under Restriction QI both GU |Z ((−∞, c] |z) ≥ τ and GU |Z ((−∞, c) |z) ≤ τ hold, and the

inequalities comprising (5.8) then follow from u (Y, Z;h) ≤ U ≤ u (Y, Z;h). These inequalities

are precisely the conditional containment inequality Ch (S|z) ≤ GU |Z (S|z) applied to test sets
S = (−∞, c) and S = (c,∞). In the proof of Theorem 6 it is shown that for any h and any c,

if the containment functional inequalities hold for these two test sets, then a random variable Ũ

can be found with admissible conditional distributions GU |Z such that the containment functional
inequalities hold for all closed test sets in RU . From Corollary 1 it follows that the characterization
(5.8) is sharp.

The second part of Theorem 6 follows because when u (Y, Z;h) and u (Y, Z;h) are continuous,

the lower bound in (5.8) is equivalent to P [u (Y,Z;h) ≤ c|z], and both inequalities in (5.8) involving
cumulative distributions of u (Y,Z;h) and u (Y,Z;h) may be inverted. Then H∗ may be equiva-
lently expressed as inequalities involving the lower and upper envelopes, q (τ , z;h) and q (τ , z;h),

respectively, of conditional quantile functions for measurable selections of U (Y,Z;h). The third

part of Theorem 6 states that the identified set of structures
(
h,GU |Z

)
are elements of H∗ paired

with distributions GU |Z (·|z) that are selectionable with respect to the conditional distribution of
U (Y,Z;h) given Z = z, a.e. z ∈ RZ .

These results can be applied for instance to single equation regression models with censored

variables and quantile restrictions, such as those of Hong and Tamer (2003), and Khan, Ponomareva,

and Tamer (2011), as well as the model of Example 2 in Section 2.2 in which the endogenous variable
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is censored.21

6 An Incomplete Model of Auctions

This Section demonstrates the power of our approach in delivering characterizations of identified

sets by resolving the question posed in Haile and Tamer (2003) (henceforth HT) regarding the

sharpness of the bounds on valuation distributions in English auctions developed in that paper.

Our new characterization of the identified set includes the pointwise lower and upper bounds on

valuation distribution functions derived in HT and refines these bounds with additional inequalities

which restrict the shape of the valuation distribution function as it passes between the HT bounds.

Our approach obviates the need for a constructive proof of sharpness, which, as noted in HT, is

diffi cult to produce in the auction model.

We study the HT model in which a known number, M , of bidders have valuations which are

independent realizations drawn from a common conditional distribution of valuations given observed

auction characteristics Z = z, denoted Az(v) ≡ P[V ≤ v|Z = z]. Bidders engage in an open outcry

ascending English auction. HT develops pointwise bounds on Az(v) which hold at each value v.

To simplify the exposition there is no minimum reserve price or minimum bid increment.22

We first set the auction model in the framework introduced in Section 2, defining a structural

function for the auction model and its U -level sets. We then apply Theorem 4 and the results

in Section 4 on core determining sets to deliver a characterization of sharp bounds on valuation

distributions supported by the HT model.

As in HT we consider the information contained in the joint distribution of ordered final bids,

Y = (Y1, . . . , YM ). Here and later, inM -element ordered lists, indexM identifies the highest value.

Realizations of V = (V1, . . . , VM ) are ordered, continuously distributed, valuations of the bidders.

Let Ũ ∈ [0, 1]M be M mutually independent uniform random variables with Ũ ‖ Z and with order
statistics U ≡ (U1, . . . , UM ). Ordered valuations can be expressed as functions of these uniform

order statistics as follows: Vm = A−1z (Um), m ∈ {1, . . . ,M} where A−1z is the quantile function

associated with the distribution function Az.

The HT model includes the restrictions: (i) no one bids more than their valuation, which implies

that the inequality in order statistics Vm ≥ Ym holds for all m, (ii) no one allows an opponent to

win at a price they are willing to beat, which requires the second highest valuation to be no larger

than the winning bid, YM ≥ VM−1.23 ,24 Applying the strictly monotone function Az to both sides

21See Appendix C of the working paper Chesher and Rosen (2015) for the characterization delivered by models
with structural function as described in Example 2.
22With a known reserve price r our analysis delivers the identified set for the distribution of valuations truncated

below at r. A simple adjustment to accommodate a nonzero minimum bid increment is indicated below.
23As before, inequalities in random variables are required to hold almost surely.
24With a minimum bid increment of ∆ this inequality is YM + ∆ ≥ VM−1.
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of these inequalities gives

Az(YM ) ≥ UM−1, ∀m : Az(Ym) ≤ Um

which leads to a structural function for the HT model.

h(y, z, u) = max{uM−1 −Az(yM ), 0}+
M∑
m=1

max{Az(ym)− um, 0},

y1 ≤ · · · ≤ yM , u1 ≤ · · · ≤ uM . (6.1)

The vector of M uniform order statistics, U , has constant density function equal to M ! supported

on RU which is the orthoscheme of the unit M -cube in which U1 ≤ · · · ≤ UM , see David and

Nagaraja (2003). Let GU (S) denote the probability mass placed by this distribution on a set

S ⊆ RU . Structures in this model are pairs (h,GU ) where h is the structural function given in (6.1)

and GU is the known distribution of uniform order statistics. The U -level sets of the structural

function (6.1) are as follows.

U(y, z;h) =

{
u ∈ RU : (Az(yM ) ≥ uM−1) ∧

M∧
m=1

(Az(ym) ≤ um)

}
(6.2)

Lemma 1 states that core determining test sets which characterize the identified set for Az(·)
are unions of these U -level sets. There is an uncountable infinity of such unions so we study a

selection of unions of U -level sets, S(y′, y′′M , z;h), defined as follows.

S(y′, y′′M , z;h) ≡
⋃

yM∈[y′M ,y′′M ]
U((y′1, y

′
2, . . . , y

′
M−1, yM ), z;h), y′′M ≥ y′M ≥ · · · ≥ y′1 (6.3)

The part of RU occupied by such a contiguous union is as follows.

S(y′, y′′M , z;h) =

{
u :
(
Az(y

′′
M ) ≥ uM−1

)
∧
(

M∧
m=1

(
um ≥ Az(y′m)

))}
(6.4)

These are termed contiguous unions because they are unions of U -sets that are contiguous along

a sequence determined by an interval of values [y′M , y
′′
M ] of the largest ordered bid. All core deter-

mining sets are contiguous unions of U -level sets, or unions of such contiguous unions.

Applied to contiguous unions the containment functional inequality given in (5.2) in Theorem

4 requires that for each z all valuation distributions, Az, in the identified set satisfy

GU (S(y′, y′′M , z;h)) ≥ P[U(Y,Z;h) ⊆ S(y′, y′′M , z;h)|z] (6.5)
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for all M , and y′ and y′′M such that y′′M ≥ y′M ≥ · · · ≥ y′1. If a model restricts the valuation

distribution to a parametric family these inequalities place restrictions on parameter values.

On the left hand side of (6.5) there is the probability:

GU (S(y′, y′′M , z;h)) = M !

∫ 1

Az(y′M )

∫ min(uM ,Az(y
′′
M ))

Az(y′M−1)

∫ uM−1

Az(y′M−2)
· · ·
∫ u2

Az(y′1)
duMduM−1duM−2 · · · du1

which follows directly from (6.4) and the known uniform distribution of the uniform order statistics

U on the orthoscheme RU . This is a degree-M polynomial function of the conditional distribution

function of valuations evaluated at y′′M ≥ y′M ≥ · · · ≥ y′1, which may be, but need not be, M + 1

distinct values. It does not depend on the probability distribution of final bids and in estimation

of the identified set it can be calculated without reference to data.

On the right hand side of (6.5) is the containment functional of S(y′, y′′M , z;h).25

P[U(Y,Z;h) ⊆ S(y′, y′′M , z;h)|z] = P

[(
y′′M ≥ YM ≥ y′M

)
∧
(
M−1∧
m=1

(Ym ≥ y′m)

)∣∣∣∣∣ z
]

(6.6)

This does not depend on the distribution Az. It is entirely determined by the joint distribution of

ordered bids and in estimation of the identified set it can be calculated once and for all at the start

of the search for the identified set of valuation distributions.

Particular choices of y′ and y′′M deliver the pointwise bounds in HT, as follows. Plugging

y′′M = +∞, y′m = −∞ for m < n and y′m = v for m ≥ n into (6.5) delivers the following inequality.

P[Un ≥ Az(v)|Z = z] ≥ P[Yn ≥ v|z] (6.7)

The marginal distribution of Un, the nth of M uniform order statistics, is Beta(n,M + 1 − n).

Let Q(·, n,M) denote the quantile function of this distribution. Transforming both sides of (6.7)

expressed in terms of distribution functions using this quantile function gives

Az(v) ≤ Q(P[Yn ≤ v|z], n,M)

which holds for all n, leading to

Az(v) ≤ inf
n∈{1,...,M}

Q(P[Yn ≤ v|z], n,M)

which is the pointwise upper bound in Theorem 1 of HT.

Plugging y′′M = v and y′ = (−∞, · · · ,−∞) into (6.5) delivers, after a similar manipulation, the

25The inequalities in Y on the right hand side follow directly from inspection of (6.2) and (6.4) once they are
written in terms of Az(y) and Az(Y ) which is valid since Az is strictly monotone increasing.
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inequality

Az(v) ≥ Q(P[YM ≤ v|z],M − 1,M)

which is the pointwise lower bound in Theorem 3 of HT.

These M + 1 contiguous unions are the only sets in the list of core determining sets that are

determined by a single value of Y . Choices of y′ and y′′M determined by more than one value

of Y lead to inequalities which restrict values of Az(·) at more than one value of its argument.
These inequalities restrict the path taken by the distribution function Az(·) as it passes between
the HT pointwise bounds. For example, plugging y′′M = v3 and y′ = (−∞, · · · ,−∞, v1, v2) into
(6.5) delivers the inequality

M(1−Az(v3))(Az(v3)M−1 −Az(v1)M−1)

−MAz(v1)
M−1(Az(v3)−Az(v2)) + (Az(v3)

M −Az(v2)M )

≥ P [v3 ≥ YM ≥ v2 ∧ YM−1 ≥ v1| z] (6.8)

which, for any z, holds for all valuation distributions Az in the identified set for all v1 ≤ v2 ≤ v3.
To demonstrate that the new inequalities can be informative we consider a population of two

bidder auctions in which the valuation distribution is an equally weighted mixture of normal dis-

tributions, N(10, 1) and N(12.5, 0.52), truncated below at zero. The final bid of a low valuation

bidder is their valuation minus an amount which is the absolute value of an independent realization

of a standard normal variable26. The final bid of a high valuation bidder is a weighted average

of the low and high valuations with the weight given by a realization of a uniform variate with

support on [0, 1]. For the purpose of illustration, containment functional probabilities (6.6) are

approximated using the result of 106 simulated independent auctions from this population.

Figure 1 shows combinations of values of the valuation distribution function, Az(v) at v ∈
(11.5, 12.5) with Az(11.5) plotted horizontally. The boundaries of the rectangular region in Figure

1 shows the upper and lower HT pointwise bounds on φ ≡ (Az(11.5), Az(12.5)) obtained with the

distribution of ordered final bids just described. The valuation distribution function is monotone

increasing so the HT pointwise bounds admit only values of φ inside the rectangular region and

above the 45◦ line. The curved lines show the bounds delivered using (6.8) with (v1, v2, v3) =

(11.5, 12.5,∞) (solid) and (v1, v2, v3) = (11.5, 11.5, 12.5) (dashed). Only values of φ lying below the

solid curve and above the dashed curve and in the rectangular box are feasible values of valuation

distribution functions that reside in the identified set. There are similar results at other choices of

values of V . The impact of the new restrictions on the identified set will depend on the distribution

of ordered final bids.

Considering all possible choices for y′ and y′′M in the contiguous unions of U -level sets (6.3) yields,

26Zero in the unlikely event this calculation delivers a negative number.
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via (6.5), a dense system of inequalities involving values of the conditional distribution function of

valuations at all choices of up to M + 1 values of its arguments. A complete characterization of

the identified set of valuation distributions also involves consideration of an uncountable infinity

of unions of contiguous unions so there is no limit to the number of coordinates of valuation

distributions simultaneously constrained by the HT model.

This auction model example highlights two major advantages of the method we advance in this

paper. First, our method can deliver the entire system of inequalities defining an identified set,

many of which are not plain-to-see. Of course in computations with finite amounts of data and

computing resources a selection of inequalities must be made and research is needed on the design

of such selections and, if design is data driven, on its impact on estimation and inference. Second,

our method necessarily delivers a characterization of the sharp identified set, obviating the need

for constructive proof of sharpness which is diffi cult to obtain for the HT model and, indeed, for

many other models.

7 Conclusion

This paper provides characterizations of identified sets of structures and structural features for

a very broad class of models. It delivers results for complete and incomplete models and for

partially and point identifying models. The results apply to models in which the inverse of the

structural mapping from unobserved heterogeneity to observed endogenous variables may not be

unique-valued. Models with discrete and censored endogenous variables fall under this heading, as

do models permitting general forms of multivariate unobserved heterogeneity, such as random coef-

ficient models and models placing inequality constraints on unobserved and endogenous variables.

The results extend the scope of application of instrumental variables for use in structural econo-

metric models, in view of which we have described the class of models covered here as Generalized

Instrumental Variable models. It is straightforward to incorporate instrumental variable restric-

tions involving conditional mean or quantile independence of unobserved variables and instruments

as well as full stochastic independence. However the coverage of the results is wider because in

some of the models to which the results apply instrumental variable restrictions play no significant

role. The incomplete model of English auctions studied in Section 6 is one such model.

The characterizations developed here always deliver sharp bounds, removing the need for case-

by-case constructive proofs of sharpness. This is a great benefit since it is often diffi cult to formulate

such proofs as, for example, is the case in the incomplete model of English auctions.

All of the characterizations of identified sets presented in this paper can be expressed as sys-

tems of conditional moment inequalities and equalities. These can be employed for estimation

and inference using a variety of approaches from the recent literature. With discrete conditioning

variables, identified sets can be expressed using unconditional moment inequalities, and inference
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Figure 1: Values of valuation distribution functions φ = (Az(11.5), Az(12.5)) for a particular dis-
tribution of ordered final bids. The rectangular box shows the HT pointwise bounds. The solid
curved and dashed lines are delivered by the new inequalities. Values of φ above the solid line,
below the dashed line or outside the HT box cannot lie on valuation distribution functions in the
identified set
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may be conducted as in Chernozhukov, Hong, and Tamer (2007), Beresteanu and Molinari (2008),

Romano and Shaikh (2008a,b), Rosen (2008), Andrews and Guggenberger (2009), Andrews and

Soares (2010), Andrews and Jia-Barwick (2010), Bugni (2010), Canay (2010), or Romano, Shaikh,

and Wolf (2014). With continuous conditioning variables inference using conditional moment in-

equalities can be performed, see for example Andrews and Shi (2013a,b), Chernozhukov, Lee, and

Rosen (2013), Lee, Song, and Whang (2013a,b), Armstrong(2014, 2015), and Chetverikov (2011).

In some models the number of inequality restrictions fully characterizing an identified set can

be large relative to the sample size. This is a problem that arises more generally and it is the

subject of current research, see for example: Menzel (2009), Chernozhukov, Chetverikov, and Kato

(2013) and Andrews and Shi (2015).

The complexity of the characterizations that can arise when using the results of this paper are

simply the consequence of using complete characterizations of identified sets, which the methods

of this paper always deliver. Compare for example the simplicity of the pointwise bounds on

valuation distributions in the English auction model of Section 6 and the complexity of the complete

characterization of the identified set of valuation distributions obtained using the results of this

paper. The additional inequalities afforded by the sharp characterization will generally deliver

tighter bounds, and so their use can be beneficial. In practice, the benefit of incorporating additional

inequalities must be weighed against computational cost and the quality of inference must be

considered too. In the working paper Chesher and Rosen (2015) we demonstrate approaches for

selecting finite collections of inequalities from the uncountable infinity of inequalities characterizing

the identified set in some continuous outcome models. There is a need for research into optimal

inequality selection procedures that take into account the error in approximating the identified

set when using a particular finite selection of inequalities and the quality of inference, which may

decline as more inequalities are considered.
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A Proofs

Proof of Theorem 1. Fix z ∈ RZ and suppose that FY |Z (·|z) is selectionable with respect to the
conditional distribution of Y (U,Z;h) given Z = z. By Restriction A3, U is conditionally distributed

GU |Z (·|z) given Z = z, and thus selectionability implies that there exist random variables Ỹ and Ũ

such that

(i) Ỹ |Z = z ∼ FY |Z (·|z),

(ii) Ũ |Z = z ∼ GU |Z (·|z),

(iii) P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1.

By Restriction A3, Ỹ ∈ Y
(
Ũ , Z;h

)
if and only if h

(
Ỹ , Z, Ũ

)
= 0, equivalently Ũ ∈ U

(
Ỹ , Z;h

)
.

Condition (iii) is therefore equivalent to

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
= 1. (A.1)
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Thus there exist random variables Ỹ and Ũ satisfying (i) and (ii) such that (A.1) holds, equivalently

such that GU |Z (·|z) is selectionable with respect to the conditional distribution of U (Y,Z;h) given

Z = z. The choice of z was arbitrary, and the argument thus follows for all z ∈ RZ . �
Proof of Theorem 2. This follows directly from application of Theorem 1 to Definitions 2 and
3, respectively. �
Proof of Corollary 1. From the selectionability characterization of M∗ in U -space in Theorem
2, we have that

M∗ =
{

(h,GU ) ∈M : GU (·|z) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}
.

Fix z ∈ RZ and suppose Y ∼ FY |Z (·|z). From Artstein’s Inequality, see Artstein (1983), Norberg

(1992), or Molchanov (2005, Section 1.4.8.), GU (·|z) 4 U (Y, z;h) if and only if

∀K ∈ K (RU ) , GU (K|z) ≤ FY |Z [U (Y, z;h) ∩ K 6= ∅|z] ,

where K (RZ) denotes the collection of all compact sets on RU . By Corollary 1.4.44 of Molchanov
(2005) this is equivalent to

∀S ∈ G (RU ) , GU (S|z) ≤ FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,

where G (RU ) is the collection of all open subsets of RU . Because GU (S|z) = 1−GU (Sc|z) and

FY |Z [U (Y, z;h) ⊆ Sc|z] = 1− FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,

this is equivalent to

∀S ∈ G (RU ) , FY |Z [U (Y, z;h) ⊆ Sc|z] ≤ GU (Sc|z) .

The collection of Sc such that S ∈ G (RU ) is precisely the collection of closed sets on RU , F (RU ),

completing the proof. �
Proof of Lemma 1. US (h, z) is a union of sets contained in S, so that US (h, z) ⊆ S and

GU |Z (US (h, z) |z) ≤ GU |Z (S|z) . (A.2)

By supposition we have

Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) . (A.3)
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The result then holds because Ch (S|z) = Ch (US (h, z) |z), since

Ch (US (h, z) |z) ≡ P [U (Y,Z;h) ⊆ US (h, z) |Z = z]

=

∫
y∈RY

1 [U (y, z;h) ⊆ US (h, z)] dFY |Z (y|z)

=

∫
y∈RY

1 [U (y, z;h) ⊆ S] dFY |Z (y|z)

= Ch (S|z) ,

where the second line follows by the law of total probability, and the third by definition of US (h, z)

in (4.2). Combining Ch (US (h, z) |z) = Ch (S|z) with (A.2) and (A.3) completes the proof. �
Proof of Theorem 3. Fix (h, z). Suppose that

∀U ∈ Q (h, z) , Ch (U|z) ≤ GU |Z (U|z) . (A.4)

Let S ∈ U∗ (h, z) and S /∈ Q (h, z). Since S /∈ Q (h, z) there exist nonempty collections of sets

S1,S2 ∈ US (h, z) with S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T ∈ Q (h, z) , S2 ≡
⋃
T ∈S2

T ∈ Q (h, z) ,

and

GU |Z (S1 ∩ S2|z) = 0. (A.5)

Since S1,S2 ∈ Q (h, z) we also have that

Ch (S1|z) ≤ GU |Z (S1|z) and Ch (S2|z) ≤ GU |Z (S2|z) . (A.6)

Because S1 ∪ S2 = US (h, z),

U (Y, z;h) ⊆ S ⇒ {U (Y, z;h) ⊆ S1 or U (Y, z;h) ⊆ S2} . (A.7)

Using (A.7), (A.6), and (A.5) in sequence we then have

Ch (S|z) ≤ Ch (S1|z) + Ch (S2|z) ≤ GU |Z (S1|z) +GU |Z (S2|z) = GU |Z (S|z) .

Combined with (A.4) this implies Ch (S|z) ≤ GU |Z (S|z) for all S ∈ U∗ (h, z) and hence all S ⊆ RU
by Lemma 1, completing the proof. �
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Proof of Corollary 2. Consider any S ∈ QE (h, z). Then for all y ∈ Y, either U (y, z;h) ⊆ S or
U (y, z;h) ⊆ cl (Sc). Thus

Ch (S|z) + Ch (cl (Sc) |z) = P [U (Y, Z;h) ⊆ S|z] + P [U (Y,Z;h) ⊆ cl (Sc) |z] = 1. (A.8)

The inequalities of Theorem 3 imply that

GU |Z (S|z) ≥ Ch (S|z) and GU |Z (cl (Sc) |z) ≥ Ch (cl (Sc) |z) .

Then GU |Z (∂S|z) = 0 implies that GU |Z (S|z)+GU |Z (cl (Sc) |z) = 1, which taken with (A.8) im-

plies that both inequalities hold with equality. �
Proof of Theorem 4. By Restriction SI, GU |Z (·|z) = GU (·) a.e. z ∈ RZ . (5.3) and (5.1) follow
from (3.1) and Theorem 2, respectively, upon substituting GU (·) for GU |Z (·|z). (5.2) follows by
Corollary 2, again replacing GU |Z (·|z) with GU (·). Equivalence of (5.1) and (5.4) with GU |Z (·|z) =

GU (·) holds by Artstein’s inequality, see e.g. Molchanov (2005, pp. 69-70, Corollary 4.44). �
Proof of Corollary 3. For any (h,GU ) ∈ M∗ we have that for any S and a.e. z ∈ RZ , both
Ch (Sc|z) ≤ GU (Sc) and Ch (S|z) ≤ GU (S). Then since GU (Sc) = 1−GU (S)

Ch (S|z) ≤ GU (S) = 1−GU (Sc) ≤ 1− Ch (Sc|z) . (A.9)

If in addition GU (∂S) = 0, then GU (Sc) = GU (cl (Sc)) and GU (S) = GU (cl (S)). Since

Ch (cl (Sc) |z) ≤ GU (cl (Sc)) then

Ch (cl (S) |z) ≤ GU (cl (S)) = GU (S) = 1−GU (cl (Sc)) ≤ 1− Ch (cl (Sc) |z) . (A.10)

Since (A.9) and (A.10) hold for a.e. z ∈ RZ , this completes the proof. �
Proof of Theorem 5. Restrictions A3 and A5 guarantee that U (Y,Z;h) is integrable and closed.

In particular integrability holds because by Restriction A3 first GU |Z (S|z) ≡ P [U ∈ S|z] so that,
for some finite c ∈ C, E [U |z] = c a.e. z ∈ RZ , and second P [h (Y,Z, U) = 0] = 1 so that

U ∈ U (Y,Z;h) ≡ {u ∈ RU : h (Y, Z, u) = 0} ,

implying that U (Y,Z;h) has an integrable selection, namely U . From Definition 6, c ∈ E [U (Y,Z;h) |z]
a.e. z ∈ RZ therefore holds if and only if there exists a random variable Ũ ∈ Sel (U (Y ,Z ; h)) such

that E
[
Ũ |z
]

= c a.e. z ∈ RZ , and hence H∗ is the identified set for h. The representation of the
identified set of structuresM∗ then follows directly from Theorem 2. �
Proof of Corollary 4. Restrictions A3 and A5 and the continuity requirement of Restriction
MI* guarantee that D (Y,Z;h) is integrable and closed. From Definition 6, for any c ∈ C, c ∈
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E [D (Y,Z;h) |z] a.e. z ∈ RZ therefore holds if and only if there exists a random variable D 4
D (Y, Z;h) such that E [D|z] = c a.e. z ∈ RZ . D 4 D (Y, Z;h) ensures that

P [D ∈ D (Y,Z;h) |z] = 1, a.e. z ∈ RZ .

Define

Ũ (D,Y, Z;h) ≡ {u ∈ U (Y,Z;h) : D = d (u, Z)} .

By the definition of D (Y,Z;h), D ∈ D (Y, Z;h) implies that Ũ (D,Y, Z;h) is nonempty. Hence

there exists a random variable Ũ such that with probability one Ũ ∈ Ũ (D,Y, Z;h) ⊆ U (Y, Z;h)

where D = d
(
Ũ , Z

)
. Thus Ũ is a measurable selection of U (Y,Z;h) and E

[
d
(
Ũ , Z

)
|z
]

= c a.e.

z ∈ RZ . Therefore H∗ is the identified set for h, and the given characterization ofM∗ follows. �
Proof of Theorem 6. Using Corollary 1 and Definition 4 with ψ

(
h,GU |Z

)
= h, the identified set

of structural functions h is

H∗∗ =
{
h ∈ H : ∃GU |Z ∈ GU |Z s.t. ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) a.e. z ∈ RZ

}
. (A.11)

We begin by considering claim (i) of the Theorem. Consider any h ∈ H∗∗. We first seek to show
that h ∈ H∗. Since h ∈ H∗∗ there exists c ∈ C and GU |Z such that qU |Z (τ |z) = c a.e. z ∈ RZ . Fix
z ∈ RZ . Then from Ch (S|z) ≤ GU |Z (S|z) in (A.11)27

Ch ((−∞, c) |z) ≤ GU |Z ((−∞, c) |z) ≤ τ , (A.12)

where the second inequality holds because qU |Z (τ |z) = c, and because of Restriction IS, U (Y, Z;h) =

[u (Y, Z;h) , u (Y,Z;h)],

Ch ((−∞, c) |z) = P [u (Y, Z;h) < c|z] . (A.13)

Similarly, for S = (c,∞) it follows that

Ch ((c,∞) |z) ≤ GU |Z ((c,∞) |z) ≤ 1− τ , (A.14)

and again using Restriction IS,

Ch ((c,∞) |z) = 1− P [u (Y,Z;h) ≤ c|z] . (A.15)

27Note that if Ch (S|z) ≤ GU|Z (S|z) holds for all closed S, then it also holds for all open S by the same reasoning
as in Corollary 1.
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Combining this with (A.14) and also using (A.12) and (A.13) above gives

P [u (Y,Z;h) < c|z] ≤ τ ≤ P [u (Y, Z;h) ≤ c|z] . (A.16)

The choice of z was arbitrary, so the above holds a.e. z ∈ RZ , implying that h ∈ H∗.
Now consider any h ∈ H∗. We wish to show that h ∈ H∗∗. It suffi ces to show that for any such

h under consideration there exists a collection of conditional distributions GU |Z such that for almost
every z ∈ RZ (1) GU |Z (·|z) has τ -quantile equal to c, and (2) ∀S ∈ F (RU ), Ch (S|z) ≤ GU |Z (S|z).

To do so we fix an arbitrary z ∈ RZ and verify the existence of a random variable Ũ distributed

GU |Z (·|z) such that (1) and (2) hold. One such is

Ũ ≡ D · u (Y, Z;h) + (1−D) · u (Y,Z;h) ,

where D is a Bernoulli random variable defined on (Ω, L,P) with parameter λ (z) = P [D = 1|z],
which is independent of (Y,Z), and where λ (z) solves

λ (z) (P [u (Y,Z;h) ≤ c|z]− P [u (Y,Z;h) < c|z]) = τ − P [u (Y,Z;h) < c|z] . (A.17)

It follows that P
[
Ũ ≤ c|z

]
= τ so that (1) holds.28 To verify (2) note that for any S ∈ F (RU ),

GU |Z (S|z) = P
[
Ũ ∈ S|z

]
≥ P [[u (Y,Z;h) , u (Y,Z;h)] ⊆ S|z] = Ch (S|z) ,

where the inequality holds because

[u (Y,Z;h) , u (Y, Z;h)] ⊆ S ⇒ Ũ ∈ S.

Thus (2) holds, and since the choice z was arbitrary, h ∈ H∗∗ as desired. This verifies claim (i).

Claim (ii) holds because with u (Y, Z;h) and u (Y,Z;h) continuously distributed given Z = z,

a.e. z ∈ RZ , their conditional CDFs are invertible at c and the lower bound in (A.16) is equal to
P [u (Y, Z;h) ≤ c|z]. Thus for any z ∈ RZ ,

q (τ , z;h) ≤ c ≤ q (τ , z;h)⇔ P [u (Y,Z;h) ≤ c|z] ≤ τ ≤ P [u (Y, Z;h) ≤ c|z] .

Claim (iii) follows directly from Theorem 2. �

28When P [u (Y,Z;h) ≤ c|z] = P [u (Y,Z;h) < c|z] the value of λ (z) is irrelevant because then in view of (A.17),

P
[
Ũ ≤ c|z

]
= τ for any λ (z) ∈ [0, 1].
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